OK扎克
让生活更简单的知识百科

15的公因数有哪些

更新时间:2024-06-08 21:27点击:

  15只有一个数,所以没有公因数,只有因数,15的因数有1、3、5、15。因为1×15=15,3×5=15。公因数,亦称“公约数”。它是一个能同时整除若干整数的整数。如果一个整数同时是几个整数的因数,称这个整数为它们的“公因数”;公因数中最大的称为最大公因数。对任意的若干个正整数,1总是它们的公因数。

数学2.jpg

  释义

  给定若干个整数,如果有一个(些)数是它们共同的因数,那么这个(些)数就叫做它们的公因数。而全部公因数中最大的那个,称为这些整数的最大公因数。

  公约数与公倍数相反,就是既是A的约数同时也是B的约数的数,12和15的公约数有1,3,最大公约数就是3。再举个例子,30和40,它们的公约数有1,2,5,10,最大公约数是10。

  公因数,又称公约数。在数论的叙述中,如果n和d都是整数,而且存在某个整数c,使得n=cd,就说d是n的一个因数,或说n是d的一个倍数,记作d|n(读作d整除n)。如果d|a且d|b,我们就称d是a和b的一个公因数。根据裴蜀定理,对每一对整数a,b,都有一个公因数d,使得d=ax+by,其中x和y是某些整数,并且a和b的每一个公因数都能整除这个d。于是d的绝对值叫做最大公因数。

  求几个整数的最大公因数,只要把它们的所有共有的质因数连乘,所得的积就是它们的最大公因数。

  最大公因数定义

  如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。约数和倍数都表示一个整数与另一个整数的关系,不能单独存在。如只能说16是某数的倍数,2是某数的约数,而不能孤立地说16是倍数,2是约数。

  "倍"与"倍数"是不同的两个概念,"倍"是指两个数相除的商,它可以是整数、小数或者分数。"倍数"只是在数的整除的范围内,相对于"约数"而言的一个数字的概念,表示的是能被某一个自然数整除的数。

  几个整数,公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。例如:12、16的公约数有1、2、4,其中最大的一个是4,4是12与16的最大公约数,一般记为(12,16)=4。12、15、18的最大公约数是3,记为(12,15,18)=3。

  几个自然数公有的倍数,叫做这几个数的公倍数,其中最小的一个自然数,叫做这几个数的最小公倍数。例如:4的倍数有4、8、12、16,……,6的倍数有6、12、18、24,……,4和6的公倍数有12、24,……,其中最小的是12,一般记为[4,6]=12。12、15、18的最小公倍数是180。记为[12,15,18]=180。若干个互质数的最小公倍数为它们的乘积的绝对值。

  求法

  质因数分解法

  把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。

  例如:求6和15的最小公倍数。先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。

  短除法

  短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。短除法的本质就是质因数分解法,只是将质因数分解用短除符号来进行。

  短除符号就是除号倒过来。短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止(两个数互质)。

  而在用短除计算多个数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。直到剩下每两个都是互质关系。求最大公因数便乘一边,求最小公倍数便乘一圈。无论是短除法,还是分解质因数法,在质因数较大时,都会觉得困难。这时就需要用新的方法。

  辗转相除法

  辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。

  这就是辗转相除法的原理。

  例如,求(319,377):

  ∵319÷377=0(余319)

  ∴(319,377)=(377,319);

  ∵377÷319=1(余58)

  ∴(377,319)=(319,58);

  ∵319÷58=5(余29)

  ∴(319,58)=(58,29);

  ∵58÷29=2(余0)

  ∴(58,29)=29;

  ∴(319,377)=29。

  可以写成右边的格式。

  用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。