OK扎克
让生活更简单的知识百科

673是不是质数

更新时间:2024-06-08 22:36点击:

  673是质数,质数的因数只有1和本身两个因数,所以673的因数有1和673。一个整数能被另一个整数整除,则后面整数是前面整数的因数,因数是求最大公因数和最小公倍数的关键。质数的因数只有1和本身,合数的因数除了1和本身外还有其他因数。

数学3.jpg

  质数介绍

  质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。

  质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。

  具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn。如果n+1为素数,则n+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

  如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。

  因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

  性质

  1、质数p的约数只有两个:1和p。

  2、算术基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。

  3、质数的个数是无限的。

  4、质数的个数公式π(n)是不减函数。

  5、若n为正整数,在n2到(n+1)2之间至少有一个质数。

  6、若n为大于或等于2的正整数,在n到n!之间至少有一个质数。

  7、所有大于10的质数中,个位数只有1,3,7,9。

  8、在一个大于1的数a和它的2倍之间(即区间(a,2a]中)必存在至少一个素数。

  9、存在任意长度的素数等差数列。

  10、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)

  11、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)

  12、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(中国潘承洞,1968年)

  13、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为(1+2)

  应用

  质数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。

  在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。

  在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的质数次数的使用也得到了证明。实验表明,质数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。

  以质数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。

  多数生物的生命周期也是质数(单位为年),这样可以最大程度地减少碰见天敌的机会。